Publicaciones

  • Revistas

2023

  1. Avila-George, H., De-la-Torre, M., Sánchez-Garcés, J., Quispe, J. J. C., Prieto, J. M., & Castro, W. (2023). Discrimination of foreign bodies in quinoa (Chenopodium quinoa Willd.) grains using convolutional neural networks with a transfer learning approach. PeerJ11, e14808. https://doi.org/10.7717/peerj.14808  
  1. Sánchez-Garcés, J., Moreno-Leyva, N. R., Marténez Soto, L., Chambi-Rodriguez, A. D., Tapara-Yanarico, D. M., Silva-Vargas, D. K., & Avila-George, H. (2023). Competency analysis based on accounting career anchors using clustering techniques. Plos one18(1), e0279989. https://doi.org/10.1371/journal.pone.0279989

  2. Cervantes, J. A., López, S., Molina, J., López, F., Perales-Tejeda, M., & Carmona-Frausto, J. (2023). CogniDron-EEG: A system based on a brain–computer interface and a drone for cognitive training. Cognitive Systems Research78, 48-56. https://doi.org/10.1016/j.cogsys.2022.11.008

2022

  1. Torres-Jimenez, J., Ramirez-Acuna, D. O., Acevedo-Juárez, B., & Avila-George, H. (2022). New upper bounds for sequence Covering Arrays using a 3-stage approach. Expert Systems with Applications207, 118022. https://doi.org/10.1016/j.eswa.2022.118022

  2. Lomelí-Huerta, J. R., Rivera-Caicedo, J. P., De-la-Torre, M., Acevedo-Juárez, B., Cepeda-Morales, J., & Avila-George, H. (2022). An approach to fill in missing data from satellite imagery using data-intensive computing and DINEOF. PeerJ Computer Science8, e979. https://doi.org/10.7717/peerj-cs.979

  3. Hernández-Calvario, O., Florián, F., Sánchez, M. G., & Ávila-George, H. (2022). Conteo de plantas de agave usando redes neuronales convolucionales e imágenes adquiridas desde un vehículo aéreo no tripulado. Revista Ibérica de Sistemas e Tecnologias de Informação, (45), 64-76. https://doi.org/10.17013/risti.45.64-76 

  4. Castro, W., De-la-Torre, M., Avila-George, H., Torres-Jimenez, J., Guivin, A., & Acevedo-Juárez, B. (2022). Amazonian cacao-clone nibs discrimination using NIR spectroscopy coupled to naïve Bayes classifier and a new waveband selection approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 270, 120815. https://doi.org/10.1016/j.saa.2021.120815

  5. Torres-Jimenez, J., Rangel-Valdez, N., De-la-Torre, M., & Avila-George, H. (2022). An Approach to Aid Decision-Making by Solving Complex Optimization Problems Using SQL Queries. Applied Sciences12(9), 4569. https://doi.org/10.3390/app12094569

  6. Gurrola-Ramos, J., Dalmau, O., & Alarcón, T. (2022). U-Net based neural network for fringe pattern denoising. Optics and Lasers in Engineering149, 106829. https://doi.org/10.1016/j.optlaseng.2021.106829  

  7. Gurrola-Ramos, J., Alarcón, T. E., & Dalmau, O. (2022). Arbitrary Scale Super-Resolution Neural Network Based on Residual Channel-Spatial Attention. IEEE Access10, 108697-108709. https://doi.org/10.1109/ACCESS.2022.3211302

  8. Rentería-Vargas, E. M., Aguilar, C. J. Z., Morales, J. Y. R., Vázquez, F. D. J. S., De-La-Torre, M., Cervantes, J. A., ... & Rodríguez, M. C. (2022). Neural network-based identification of a PSA process for production and purification of bioethanol. IEEE Access10, 27771-27782. https://doi.org/10.1109/ACCESS.2022.3155449

2021

  1. Gurrola-Ramos, J., Dalmau, O., & Alarcón, T. E. (2021). A Residual Dense U-Net Neural Network for Image Denoising. IEEE Access9, 31742-31754. https://doi.org/10.1109/ACCESS.2021.3061062 

  1. Avila-George, H., De-la-Torre, M., Castro, W., Dominguez, D., Turpo-Chaparro, J. E., & Sánchez-Garcés, J. (2021). A Hybrid Intelligent Approach to Predict Discharge Diagnosis in Pediatric Surgical Patients. Applied Sciences11(8), 3529. https://doi.org/10.3390/app11083529

  1. Oblitas, J., Mejia, J., De-la-Torre, M., Avila-George, H., Seguí Gil, L., Mayor López, L., ... & Castro, W. (2021). Classification of the Microstructural Elements of the Vegetal Tissue of the Pumpkin (Cucurbita pepo L.) Using Convolutional Neural Networks. Applied Sciences11(4), 1581. https://doi.org/10.3390/app11041581

  1. Sánchez-Garcés, J., J Soria, J., Turpo-Chaparro, J. E., Avila-George, H., & López-Gonzales, J. L. (2021). Implementing the RECONAC Marketing Strategy for the Interaction and Brand Adoption of Peruvian University Students. Applied Sciences11(5), 2131. https://doi.org/10.3390/app11052131

  1. Torres-Jimenez, J., Acevedo-Juárez, B., & Avila-George, H. (2021). Covering Array EXtender. Applied Mathematics and Computation402, 126122. https://doi.org/10.1016/j.amc.2021.126122

  1. Sepúlveda-Cisneros, O., Acevedo-Juárez, B., Saldaña-Durán, C. E., Castro, W., De-la-Torre, M., & Avila-George, H. (2021). Desarrollo de un sistema embebido para un compostero doméstico inteligente. Revista Ibérica de Sistemas e Tecnologias de Informação, (41), 112-128. https://doi.org/10.17013/risti.41.112-129

  2. Cervantes, J. A., López, S., Cervantes, S., Mexicano, A., & Rosales, J. H. (2021). Visuospatial Working Memory for Autonomous UAVs: A Bio-Inspired Computational Model. Applied Sciences, 11(14), 6619. https://doi.org/10.3390/app11146619

2020

  1. Pérez-Espinosa, H., Martínez-Miranda, J., Espinosa-Curiel, I., Rodríguez-Jacobo, J., Villaseñor-Pineda, L., & Avila-George, H. (2020). IESC-child: An interactive emotional children’s speech corpus. Computer Speech & Language59, 55-74. https://doi.org/10.1016/j.csl.2019.06.006

  1. Ponce-Corona, E., Sánchez, M. G., Fajardo-Delgado, D., Acevedo-Juárez, B., De-la-Torre, M., Avila-George, H., & Castro, W. (2020). Una revisión sistemática de la literatura enfocada al uso de vehículos aéreos no tripulados durante el proceso de detección de vegetación. Revista Ibérica de Sistemas e Tecnologias de Informação, (36), 82-101. http://dx.doi.org/10.17013/risti.36.82-101

  1. Rumbo Morales, J. Y., Perez Vidal, A. F., Ortiz Torres, G., Salas Villalobo, A. U., Sorcia Vázquez, F. D. J., Brizuela Mendoza, J. A., . De-la-Torre, M. & Valdez Martínez, J. S. (2020). Experimental Case: Adsorption and Separation of H2O/H2SO4 and H2O/C2H5OH by Natural Zeolites (Clinoptilolite and Heulandite) and Synthetic (Type 3A), Simulation Case: Dehydrated Ethanol Production Using the Pressure Swing Adsorption Process. Processes8(3), 290. https://doi.org/10.3390/pr8030290

  1. Cervantes, S., Mexicano, A., Cervantes, J. A., Rodríguez, R., & Fuentes-Pacheco, J. (2020). Binary Pattern Descriptors for Scene Classification. IEEE Latin America Transactions18(01), 83-91. https://doi.org/10.1109/TLA.2020.9049465

  1. Cervantes, J. A., López, S., Rodríguez, L. F., Cervantes, S., Cervantes, F., & Ramos, F. (2020). Artificial moral agents: A survey of the current status. Science and engineering ethics26(2), 501-532. https://doi.org/10.1007/s11948-019-00151-x

  1. Cervantes, S., López, S., & Cervantes, J. A. (2020). Toward ethical cognitive architectures for the development of artificial moral agents. Cognitive Systems Research64, 117-125. https://doi.org/10.1016/j.cogsys.2020.08.010

  1. Calvario, G., Alarcón, T. E., Dalmau, O., Sierra, B., & Hernandez, C. (2020). An Agave Counting Methodology Based on Mathematical Morphology and Images Acquired through Unmanned Aerial Vehicles. Sensors20(21), 6247. https://doi.org/10.3390/s20216247

2019

  1. De-la-Torre, M., Zatarain, O., Avila-George, H., et al. (2019). Multivariate Analysis and Machine Learning for Ripeness Classification of Cape Gooseberry Fruits. Processes, 7(12), 928. https://doi.org/10.3390/pr7120928

  1. Castro, W., Oblitas, J., De-la-Torre, M., Cotrina, C., Bazán, K., & Avila-George, H. (2019). Classification of Cape gooseberry fruit according to its level of ripeness using machine learning techniques and different color spaces. IEEE Access, 7:27389--27400. https://doi.org/10.1109/ACCESS.2019.2898223

  1. Perez-Mena, A., Fernández-Zepeda, J.A., Rivera Caicedo, J.P., & Avila-George, H. (2019). Una aplicación móvil para el monitoreo de cultivos: caso de estudio campaña contra el pulgón amarillo del sorgo. Revista Ibérica de Sistemas y Tecnologías de la Información, 31:118--133. https://doi.org/10.17013/risti.31.118-133

  1. Torres-Jimenez, J. Izquierdo-Marquez, I., & Avila-George, H. (2019). Methods to Construct Uniform Covering Arrays. IEEE Access, 7(1):42774--42797. https://doi.org/10.1109/ACCESS.2019.2907057

  1. Yoplac, I., Avila-George, H., Vargas, L., Robert, P., & Castro, W. (2019). Determination of the superficial citral content on microparticles: An application of NIR spectroscopy coupled with chemometric tools. Heliyon, 5(7):e02122. https://doi.org/10.1016/j.heliyon.2019.e02122

  1. López, S., Cervantes, J.A., Cervantes, S., Molina, J., & Cervantes, F. (2020). The plausibility of using unmanned aerial vehicles as a serious game for dealing with attention deficit-hyperactivity disorder. Cognitive Systems Research, 59, 160-170. https://doi.org/10.1016/j.cogsys.2019.09.013

  1. Cervantes, J.A., López, S., Rodríguez, L.F., Cervantes, S., Cervantes, F., & Ramos, F. (2019). Artificial Moral Agents: A Survey of the Current Status. Science and engineering ethics, 1-32. https://doi.org/10.1007/s11948-019-00151-x

  1. Yoplac, I., Avila-George, H., Vargas, L., Robert, P., & Castro, W. (2019). Predicción del contenido de superficial de citral en micropartículas mediante espectroscopia NIR y regresión por mínimos cuadrados parciales. Revista Técnica de la Facultad de Ingeniería, Universidad del Zulia, 42(2):24-33. 

2018

  1. Avila-George, H., Valdez-Morones, T., Pérez-Espinosa, H., Acevedo-Juárez, B., & Castro, W. (2018). Using Artificial Neural Networks for Detecting Damage on Tobacco Leaves Caused by Blue Mold. International Journal of Advanced Computer Science and Applications, 9(8):79-583. https://doi.org/10.14569/IJACSA.2018.090873

  1. Sánchez, G.C., Dalmau, O., Alarcón, T.E., Sierra, B., & Hernández, C. (2018). Selection and Fusion of Spectral Indices to Improve Water Body Discrimination. IEEE Access, 6, 72952-72961. https://doi.org/10.1109/ACCESS.2018.2881430

  1. Castro, W., Prieto, J.M., Guerra, R., Chuquizuta, T., Medina, W.T., Acevedo-Juárez, B., & Avila-George, H. (2018). Feasibility of using spectral profiles for modeling water activity in five varieties of white quinoa grains. Journal of Food Engineering, 238:95--102. https://doi.org/10.1016/j.jfoodeng.2018.06.012

  1. Torres-Jimenez, J., Izquierdo-Marquez, I., Acevedo-Juárez, B., & Avila-George, H. (2018). A greedy-metaheuristic 3-stage approach to construct covering arrays. Information Sciences 460-461:172--189. https://doi.org/10.1016/j.ins.2018.05.047

 

  • Capítulos de libro

2020

  1. Castro, W., Oblitas, J., Rojas, E. & Avila-George, H. (2020). Partial Least Square Regression for food analysis: basis and example. In: Sevda, S. and Singh, A., editor, Mathematical and Statistical Applications in the Food Engineering, chapter 11, pp. 141--160. CRC Press.

  1. Oblitas, J., De-la-Torre, M., Avila-George, H., & Castro, W. (2020). The use of correlation, association, and regression techniques for analyzing processes and food products. In: Sevda, S. and Singh, A., editor, Mathematical and Statistical Applications in the Food Engineering, chapter 5, pp. 51--67. CRC Press.

  1. Fonseca, J., De-la-Torre, M., Cervantes, S., Granger, E., & Mejia, J. (2020). COMET-OCEP: a software process for research and development. In International Conference on Software Process Improvement (pp. 99-112). Springer, Cham.

2019

  1. Mejia, J., Hernández, A., Cossio, E., Montes Rivera, M., Lara-Alvarez, C., & Avila-George, H. (2019). Solving instances of an Order Picking Model for the Second-Hand Toy Industry combining Amalgam Case-based Reasoning and PSO Algorithms. In: A. Ochoa et al., editor, Handbook of Research on Metaheuristics for Order Picking Optimization in Warehouses to Smart Cities, chapter 16, pp. 289--302. IGI Global. https://doi.org/10.4018/978-1-5225-8131-4.ch016

  1. De-la-Torre, M., Avila-George, H., Oblitas, J., & Castro, W. (2019). Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits. In: Mejia J., Muñoz M., Rocha Á., A. Calvo-Manzano J. (eds), Trends and Applications in Software Engineering, chapter 17, pp. 219--233. Springer, Cham. https://doi.org/10.1007/978-3-030-33547-2_17

  1. López, S., Cervantes, J. A., Cervantes, S., Molina, J., & Cervantes, F. (2019). Brain-Computer Interfaces for Controlling Unmanned Aerial Vehicles: Computational Tools for Cognitive Training. In Biologically Inspired Cognitive Architectures Meeting, pp. 315-320. Springer, Cham. https://doi.org/10.1007/978-3-030-25719-4_40

2018

  1. Rodriguez-Ramirez, R., Sanchez, M.G., Rivera Caicedo, J.P., Fajardo-Delgado, D., & Avila-George, H. (2018). Automating an Image Processing Chain of the Sentinel-2 Satellite. In J. Mejia et al., editor, Trends and Applications in Software Engineering, chapter 20, pages 216-224. Springer. https://doi.org/10.1007/978-3-030-01171-0_20

  1. Perez-Mena, A., Fernández-Zepeda, J.A., Rivera Caicedo, J.P., & Avila-George, H. (2018) PulAm: An App for Monitoring Crops. In J. Mejia et al., editor, Trends and Applications in Software Engineering, chapter 18, pages 196-205. Springer. https://doi.org/10.1007/978-3-030-01171-0_18

  1. Valdez-Morones, T., Perez-Espinosa, H., Avila-George, H., Oblitas, J., & Castro, W. (2018). Aplicación móvil para la detección de daños en hojas de tabaco (Nicotiana tabacum L.) por moho azul (Peronospora tabacina Adam). In J. Mejia et al., editor, Applications in software engineering, chapter 14, pages 125-129. IEEE. https://doi.org/10.1109/CIMPS.2018.8625628

  1. Bustos, J.F., de la Torre Gómora, M.Á., & Cervantes Álvarez, S. (2018). Software Engineering Process for Developing a Person Re-identification Framework. In J. Mejia et al., editor, Applications in software engineering, chapter 7, pages 69-77. IEEE. https://doi.org/10.1109/CIMPS.2018.8625627

  1. Ramírez, D.M., Cervantes, J.A., Molina, J., & López, S. (2018). Requirements Engineering to Design a Brain-Computer Interface for Cognitive Training. In J. Mejia et al., editor, Applications in software engineering, chapter 8, pp. 79--84. IEEE. https://doi.org/10.1109/CIMPS.2018.8625612

  • Manuales

  1. Rosete Serrano, Julio; De la Torre Gómora, Miguel & Alarcón Martínez, Teresa Efigenia. Manual de prácticas de Análisis de Señales y Sistemas. En proceso.